Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry.

نویسندگان

  • Petr Pompach
  • Jana Nováková
  • Daniel Kavan
  • Oldřich Benada
  • Viktor Růžička
  • Michael Volný
  • Petr Novák
چکیده

BACKGROUND Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an important factor for predicting the risk of myocardial infarction, cardiovascular death, and stroke. Current methods for haptoglobin phenotyping include PCR and gel electrophoresis. A need exists for a reliable method for high-throughput clinical applications. Mass spectrometry (MS) can in principle provide fast phenotyping because haptoglobin α 1 and α 2, which define the phenotype, have different molecular masses. Because of the complexity of the serum matrix, an efficient and fast enrichment technique is necessary for an MS-based assay. METHODS MALDI plates were functionalized by ambient ion landing of electrosprayed antihaptoglobin antibody. The array was deposited on standard indium tin oxide slides. Fast immunoaffinity enrichment was performed in situ on the plate, which was further analyzed by MALDI-TOF MS. The haptoglobin phenotype was determined from the spectra by embedded software script. RESULTS The MALDI mass spectra showed ion signals of haptoglobin α subunits at m/z 9192 and at m/z 15 945. A cohort of 116 sera was analyzed and the reliability of the method was confirmed by analyzing the identical samples by Western blot. One hundred percent overlap of results between the direct immunoaffinity desorption/ionization MS and Western Blot analysis was found. CONCLUSIONS MALDI plates modified by antihaptoglobin antibody using ambient ion landing achieve low nonspecific interactions and efficient MALDI ionization and are usable for quick haptoglobin phenotyping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry.

Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS) using nanoparticles (NPs) and nanostructured surfaces as the LDI-assisting nanomaterials is a soft ionization technique that features minimal fragmentation of analytes. As compared to traditional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using organic ma...

متن کامل

Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces

Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein compl...

متن کامل

Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS).

Functionalized magnetic nanoparticles (MNPs) have been characterized by laser desorption/ionization mass spectrometry (LDI-MS). Quantitative information about surface ligand composition and structure for monolayer and mixed monolayer protected Fe3O4 and FePt NPs can be obtained rapidly with very little sample consumption.

متن کامل

Functionalized porous silicon surfaces as MALDI-MS substrates for protein identification studies.

Alkyl monolayer modified porous silicon functional surfaces are employed for selective binding of proteins from complex mixtures (through washing of the deposited mixture spot using appropriate buffer) and MALDI-MS is used to detect the components retained on the surface.

متن کامل

Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers.

The synthesis and size-selective catalytic activity of Pd nanoparticles encapsulated within dendrimers functionalized with different-sized end groups is described. We designed and synthesized a series of fourth-generation poly(amidoamine) dendrimers having various extents of steric crowding on their periphery. This was accomplished by reacting the terminal amine groups of these dendrimers with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2016